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The probability of finding the electron at a point 7 and at temperature T in a H atom is found
by considering only the discrete states and summing over the various quantum numbers using its
Fourier transform. It is shown that at high temperatures this probability is of the same form as the

density of electrons in a heavy atom.

PACS number(s): 05.30.—d

One of the interesting problems in physics is the study
of quantum systems at finite temperature T'. The expres-
sion for the probability distribution P(7, 3) was given by
Slater [1] as

P(7,p8) = {Z |q(M) exp(—ﬂEq)]

X [z exp(—,BEq)} , (1)

q

where ¢4 are the exact normalized eigenfunctions of the
system and E, the corresponding eigenvalues. The pa-
rameter 3 = (k7)™ !, where k is the Boltzmann constant.
The probability P(7,3) can also be determined by the
Bloch equation [2], but in the present work we would
like to work directly with expression (1) as recently tech-
niques have been developed to calculate the sums over
Hermite and Laguerre polynomials.

The problem we would like to discuss here is the cal-
culation of the probability P(7,3) for the H atom. This
is the probability of finding the electron at the point 7 if
the H atom is thermally excited. As will be shown later,
unlike the one-dimensional harmonic oscillator [3], where
P could be calculated in a straightforward way using the
properties of Hermite polynomials, expression (1) cannot

N 2\2n
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n=1

be evaluated in a simple way for the H atom because one
has to consider both the discrete and continuous states.
In the present work we shall only consider the excitations
that lead to bound states up to some maximum princi-
pal quantum number N. With this assumption we shall
show that the probability P(7,3) for high temperatures
can be obtained from the density of electrons in heavy
atoms [4].

Let ¢nem(7) denote the orthonormal set of bound
states of the H atom, n,£,m being the usual quantum
numbers. Then the probability P(7, 3), given by expres-
sion (1), can be written as
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E,, being the bound state energies.
As shown in Ref. [4], the summation over m, £ can be

carried out by first writing the Fourier transform g(E, B)
a(k.p) = [ df exp(ik-7)P(7 ). (3)

This gives the following expression for g(E, B):
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*Electronic address: nu@tifrvax.tifr.res.in

1063-651X/96/53(4)/4182(2)/$10.00 53

n=1

4182 ©1996 The American Physical Society



53 BRIEF REPORTS

where 3 F(a, b;c; z) is a hypergeometric function [5].
Since the hypergeometric functions in expression (4)
are polynomials in n, one can calculate g(E, [) at a given
temperature T' and invert it to find P(7,3). The most
interesting result that follows from expression (4) is that
for T > 1, the exponential functions in expression (4)
go to unity and if N is sufficiently large g(E,ﬂ), B — 0,
can be approximated by [4] Bessel functions, which on
inversion gives P(7,3), 8 — 0, by the expression

6 =[] (a32) 0 ai) " @

B—0,0<r<2N2,

The expression on the right-hand side in expression (5)
is the same as the expression for the density of electrons
in heavy atoms. Thus, at high temperatures P(7,3) is
related to the density of electrons in heavy atoms.

We would now like to make a few remarks. The first

4183
is that at T = 0, expression (4) gives
- 16
k,fB) = = 6
g( 7/8) (k2+4)27 ( )

which is the Fourier transform of the ground state of the
H atom, as it should be. Our next remark is that at high
temperatures, expression (5) shows that the probability
P is zero beyond r > 2NZ2. This is consistent with a
recent formulation of the partition function [6] of the H
atom in which to get the finite results one has to use wave
functions within some given volume.

Our last remark is about the effect of the inclusion of
the continuum states on the expression for the probabil-
ity P given by (5). It is obvious that if one uses the usual
normalization for the continuum wave functions §(k—%’),
where k is the magnitude of the momentum, one will get
divergent results. The integration over a finite range of
r will remove this divergence. As the continuum wave
functions oscillate like spherical Bessel functions, the ef-
fect of the inclusion of the continuum on the probability
will show up as small fluctuations in r.
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